希灵OL设为首页收藏本站

远瞳在线

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 1073|回复: 17

【转】《太空战斗导论》

[复制链接]
发表于 2012-7-16 10:01:53 | 显示全部楼层 |阅读模式
很多人都看过以太空为背景的各式科幻电影与动画,其中不乏大量的战斗场景。小型快速的战斗机或是机器人,巨型战舰,航空母舰,固定甚至是机动惑星要塞之类的双方或多方在近距离互射武器,你来我往,屏幕上各类死光交叉纵横。但有多少人曾经想过在这些场景之中哪里些是必然的,哪里些是在技术进步之后有可能发生的,而又有哪里些是毫无道理的呢?笔者本著HardSF的精神,在此开个半空想科学教室,为大家探讨一下太空战争中一些具有较大可能性的情况。

首先来讨论的是太空中可能会发生战斗的各种地点与情况。要讨论这个之前,首先必须了解何谓战争。战争者,对于有限资源的暴力争夺者也。所谓的有限指的是战争双方中,至少是其中的一方认为某项资源是有限的,其价值值得以暴力去争取者。因此甚至可能仅是某方或是双方主观认为的有限而非实际上的有限。另外政治资源也算是资源之一,为此而爆发战争也是有可能发生的。

对于资源的争夺,一般有两条途径,其一是由己方来控制某项资源,其二是阻止敌方控制它。第一条途径会表现在对于资源产地的直接争夺上,第二条途径则是表现在对于资源运输流通管道的阻碍与维护之上。需注意的是,这两者在相当的程度上是可以互相诠释的。依照这个理念,战斗由于据点的争夺与交通的遮断与维持这两个目的而发生。前者不用说,行星或是太空中人造建筑据点,甚至是某个恒星系本身的争夺战。从区域太空优势到轨道轰炸与强袭登陆,甚至是直接摧毁行星或太空站之类的毁灭性手段,各种情形都可能发生。至于后者,则就是运输航线的遮断骚扰等通商破坏战与船团护航任务等情形了。

就第一个情况而言,战斗首先会发生在行星周边,浮游要塞或是恒星系周边航道上。这里所谓的周边很容易让大家有种狭隘的感觉,但要了解宇宙空间是很广大的。即使是行星外围,指的也是数光秒到数十光秒的距离。但是就恒星系外围而言,战场空间并不会随比例而放大。规模大到恒星系间战斗的时候,也只是在对于恒星系来说外围薄的几乎会让人忘了他的存在的一层空间上发生。

就相对上而言,恒星系周边战场空间与行星周边战场空间不成比例,但就绝对范围而言,前者则会比后者大上数十倍。实际上恒星系周边空域的战斗不太可能,或者说要很久以后才有可能发生。这是基于距离与太空船速度的因素,在行星系周边的战斗上,想要取得内线优势已经相当吃力了。对于恒星系周边空间而言即使是光速前进的太空船也不太能有效防御这么大的范围,而侦测距离也很难在短期内能够支持到此种距离。

慢著,我听到有人提到WARP了?很有趣的是这是一个矛盾因素,先不提WARP理论上与技术上的困难好了,虽然它可以让守方很快的赶到战场,但相对的,它也可以让攻方直接跳过守方在恒星系外围的防御圈,直接进入恒星系内部攻击目标。这会导致战斗也不会爆发在恒星系外层。换句话说,WARP其实是一种对于攻方能够产生的优势远大于对于守方能够产生的优势的一种技术。

以星际大战中的战斗机也能进行超空间跳跃的技术水平来分析,在这种技术已经成立的环境下是不可能有大规模中央集权的政府的,帝国也好,较强结构的宇宙联邦也好(帝国之前的同盟其实就是抄自美国的联邦体系),这种体系将会面临各种分离主义者,各地的游击武力与恐怖份子的巨大威胁。这些小型武装部队可以轻易的攻击中央集权政府的各个要害。因为在具有超空间跳跃能力的小型机之前,外围防线有跟没有是完全一样的。

极端的说来,星际大战中,反抗军其实可以直接把X战机中队跳跃至帝国首都行星或是各个重要据点行星附近对其进行一击脱离战术。而想要防护这种攻击,就必须在每个行星配置大量战斗机中队,轨道与地面防空系统等。而其花费将是游击武力的数千倍到数万倍。因为游击武力没有固定基地可以被攻击,故他们只要有一个中队的战机,帝国就必须在其所有的星系都至少配置两三个中队的战斗机来对抗,且这些战斗机还要维持完全警戒状态。很明显的这是不可能的,因而也不会有帝国或是联邦等政体存在,顶多是邦联等松散结合的政治结构或者说是集体安全结构。换句话说WARP技术的影响力将不仅止于战术层面,而会高达战略层面,甚至是整个恒星系或是宇宙文明的深层结构层面。基本上在没有WARP的世界,战斗将主要发生在行星或是恒星系周边就是了。


就第二个情况的运输航线骚扰阻绝与防御而言,主要也是会发生在恒星系内,各行星间的转移轨道上。恒星系间的运输可能性并不大,或者说未知性太高,同时甚至可能根本没有必要。因为至目前为止依据对恒星的光谱分析研究得出的结论是构成所有恒星系的基本物质是相同的。远方恒星系中有的原料在自己的恒星系中一定也有。而在智能生命把自己恒星系资源消耗完毕之前,会先发展出回收再生,原子重组或甚至质能互换的技术。

第一项不用提了,第二第三项除了大家熟悉的核能是由质量转换成能量之外,还有比较少人听过的各个高能物理研究中心都在用高能加速器产生新粒子,其就是在进行将能量转换成质量的步骤。就原子重组方面,或许在将来微机械(MicroMachine)技术成熟后会有更高的可行性与更低的成本。星舰企业号的电传系统,即将人转换成电波传送再予以复原的技术只要稍微更改一下便是很有用的点石成金术。只要把以资料形式传送的电波的内容动点手脚,就可以把出发时的石头的原子排列方式改变成在目的地形成黄金的原子排列方式(或是其它任何物质)。这些技术将会使恒星系间运输无法与之竞争。

当然,行星际太空运输由于成本较低或是技术不够先进时仍然会有重要的地位。而行星系间运输的干扰则很简单,用舰队去攻击航在线的商船与运输舰。这是唯一的方法,目前的布雷等技术是无效的。原因很简单,因为太空不是大海。宇宙是开放的,任何物体在太空中都无所遁形。当然一些低反光的陨石难以侦测,但机雷等人工物体由于需要侦测设备等因而会放出热源,虽然这个热源会比一般舰艇小,但是还是会比陨石易于侦测。另外一个原因是运输舰,特别是高速运输舰本身的陨石防护装置。

和地球上大不相同的是地球上的商船即使碰到微小异物也不会有什么损失,但宇宙中即使是小如小指的陨石,由于运动速度都是每秒数十公里以上,无装甲的运输舰只要受到撞击必定会造成损失。虽然爆炸是不至于,不过货物的损失,燃料的外泄之类的都免不了。体积越大的运输舰受到撞击的机会越大,因此船公司为了省钱,必然要有对陨石的应对策略。由于商船当然不会装上装甲来浪费酬载,因此为了避免撞击微小陨石造成损失,一般都应该会选择装上固定的雷射雷达与小型的雷射炮塔用来蒸发或是推开前方航在线的小型陨石,并以运动来回避较大的陨石。特别是要进出小型星带外围的浮游工厂与拉格朗日重力平衡点等陨石群集之地的舰艇。

而这些避碰装备也可以轻易侦测到航在线的机雷并予以扫除或避开,因此一般的机雷是无用的。包装式的沈睡飞弹机雷由于体积大,需要装引擎与燃料因而价格昂贵无法大量部属,且在易于被侦测这点上与一般机雷是相同的,甚至因为需要具有侦测系统和动力的因素,可能更容易被侦测。因而也更不可能出现。

机雷另一个不能产生效用的原因是太空的广大。一条航线的宽度可以有数千公里到数万公里,而且还是三度空间的航线,故即使是用便宜机雷,也很难达到足够的密度。当然最太空船节省燃料的航线精确度较高,但这狭小的地带正是在舰首陨石侦测雷达的侦测范围内。因此想要阻碍运输还是得用军舰才行。只要一两艘小型军舰,其防护力与火力便不是民间商船的防陨石雷射炮塔所可以打发掉的。因而商船必须要绕道(意味著浪费燃料与增加成本),或者要求军舰护航(也是浪费军舰燃料与成本,外加分散战力)。

基于以上的因素,骚扰战术是一定会被执行的,护航任务当然也会。不过需要注意的是由于骚扰方通常必须回到母港,而护航一方一般可在目的地加油,因而即使两者用的是同等级的军舰,护航方的战斗速度与机动力将是骚扰方的两倍。不过这仅是战斗速度,骚扰方的优势则是由于其拥有主动权,其选择接战时速度将是其最高战斗速度。而根据太空船的航行原理,通常这也就是最高巡航速度。但护航方则由于必须跟随商船,因此最初接战瞬间,护航舰艇的速度将只是商船等级的最高巡航速度。由于商船以经济考量来设计,故这个速度不会很高。因此护航军舰必须有一段加速的时间,这使其在刚接战时较为吃亏,且可能成为第一击的目标。但护航军舰的较高加速度将可以使其在与本队商船相比时,具有很大的优势,能够有更多的机率残存下来。

基本上,对骚扰方而言,这可以是一个主要的作战,但对于被骚扰的护航一方而言,若是长期被动的被骚扰下去,会处于一个相当不利的地步。因而就护航方而言护航作为只是一个次要的战场,主要的精神将会用在政治解决或是发动另一个大规模攻势的军事解决方案上。
 楼主| 发表于 2012-7-16 10:04:06 | 显示全部楼层
                                                             【武器系统】
大致讲了战场环境,现在来讨论可能的武器系统。太空大战中可能会有那些武器呢?一般主要会以导能武器为主,直接撞击的质量兵器与飞弹等为辅。导能武器者DirectEnergyWeapon也,也有人翻成指向能量武器。讲白一点就是把能量集中朝某个方向发射的武器。雷射与粒子炮皆属之,以下分别介绍之。

1.雷射武器(LaserWeapon)

讲到太空大战当然少不了雷射炮。雷射炮属于导能武器系统之一,它有几个特点:

一,弹道速度与射速快。

雷射当然是光速前进,就射速而言通常也会比其它武器快些。

二,有效射程远与精确度高。

这点是从速度来的,如果要求同样的精确度,速度越快的武器当然有效射程就越远。这也就是你拿手枪打人通常比拿石头丢人容易打中的缘故。而在相同的射程要求下,也是弹道速度较快的武器精确度较高。

三,威力随距离递减。

雷射看起来象是直线,实际上还是会扩散的。60年代美国登月时在月球上放了个反光版,从某天文台向其发射雷射去测量地月距离。发射出去的雷射直径不到一公分,但是打到月球表面就变成一个直径约3.2公里的光斑了。所以雷射炮攻击目标时如果距离太远,则就会象是在帮人取暖一样,单位面积投掷的能量密度不足,照的到但打不穿。因此雷射的聚焦能力(扩散角)也限制了它的有效射程。

但是大家要注意,上面的例子只是用来让大家了解概念的特例,那只是测距雷射,武器级雷射的扩散角是非常小的。雷射的扩散幅度单位称为「微弪」(μrad)。1微弪就是百万分之一个弪(rad)。通常我们把雷射源视为一个点,把目标距离乘上百万分之一就是一微弪雷射的靶区直径。也就是说具有1微弪扩散角的雷射射击一百万公尺(一千公里)远的目标,则靶区将是一个一公尺直径的圆。而各种雷射的收束力有几微弪呢?这可以用一个简单的公式表示之:

rad=使用的光束波长(单位为μm)÷反射镜直径(单位为m)×1.2

此为理论雷射扩散界限值。其中的μm乃微米,即百万分之一(10的负6次方)公尺。将该代入的数字加减乘除之后会得出一个答案,这就是使用某波长某直径反射镜的理论微弪值。如果使用波长为10nm(0.01μm)的硬X光雷射,外加直径十公尺的反射镜,则打到一光秒(30万km)以外会成为一个直径36公分的圆形靶。这是差不多的数字。通常由于能量密度的因素,光束靶直径大于一公尺的话算是扩散会太过严重,可能会打不穿装甲或是只削一个浅洞而已。故这种雷射的有效射程上限约在一到三光秒之间。又根据上面的公式可知,想增加雷射的聚焦能力(即射程)基本上有两种方法:使用更短波长的光束或是使用更大的反射镜。而前者远比后者困难,所以主要会以增加反射镜直径为主。

雷射反射镜多半是用抗热材料镀上数层特殊涂膜而成,并且也可以使用多个小镜片组合构成的复合反射镜组。复合镜组只要调整各个小镜片的角度便可以微调焦距,制造上也比单一巨大镜面简易,只是系统会比较复杂。另外要注意的是雷射炮可以在有效射程外做为雷达使用来侦测敌人位置。调整一下波长或是反射镜曲率便可以增大扩散角以增加涵盖面积,这样一来雷射虽然打不穿敌人,但会有一部份光线反射回来可以作为资料分析,就跟雷达一样。这可能是未来太空中的主要侦测系统之一。雷射炮必要时甚至可以作为通讯的工具,雷射炮塔也可以作为指向通讯的讯号塔。当然此时就要注意输出和距离,不能强到打破友舰。

四,雷射炮弹药价格便宜且数量庞大。

这个非常明显,雷射产生装置本身可能很贵,但用的弹药便是能源,而能源通常是很便宜的,弹药储存空间的问题也很小,雷射弹药的储存空间可以视为燃料的空间,甚至可以直接使用主引擎的动力而不需要携带他种燃料。如果是飞弹或是其它东西,则还有导向系统与引擎弹体的价格,还要浪费空间与酬载量去装,因此雷射武器的弹药价格与其它武器相比,可说非常便宜。

就目前的行情,一枚飞弹要数万到上百万美金之间,宇宙中用的大型飞弹将会更贵。但是目前雷射的燃料费一发只不过数百到数千美金而已(当然是地球上使用的低威力反飞弹雷射的价格)。雷射炮的缺点是与其它武器相比其威力不足,破坏范围较小,要防御也较方便。


但有一点要注意的是,船壳采用反射材质来抵抗雷射的概念是没有用的。高反射率材质在宇宙中极端不利于匿踪,它将会反射大量日光,使船舰可以在非常远的地方被侦察到。而即使是高反射率的材质也不可能反射所有波段的光线,此时只要侦测其吸收频谱便可以轻易攻击之。吸收频谱观察技术目前被大量运用在恒星与行星观测时的物质光谱分析上。也就是将从目标反射的光线(即目标影像)予以光学分析,找出其最易吸收的波段,这在分析光谱上是黑色的部份,亦即被目标吸收掉而极少反射出来的部份,便可以用可调频的自由电子雷射调整到该波段进行攻击,让能量尽量被目标完全吸收;再者若使用高能的X射线雷射与迦玛射线由于波长太短也十分难以反射,故反射防御法实用性并不大。

又,若船壳采用低反射率的光线吸收材质,则会不利于隔热散热,特别是在接近恒星的地方会大量吸热而导致机件故障,故船壳将会在匿踪与散热两者间取个平衡。但对于船舰本身的运转需求而言,隔热/散热的需求优先度将会高于匿踪的需求。

不过雷射是主要是让船壳吸收热能来打洞,因此若是在船壳中加上夹层灌进具有高吸热量的液体便可以吸收雷射的威力,亦可以对流来削减部份的热能与脉冲伤害。如此一来雷射虽然穿了洞,但是大部份威力将会被吸热液体材质吸收,然后这些液体从洞里流出去的时候由于外面温度是3k,所以会立刻冷凝把洞封住。

或者象是银英传动画中的伊谢尔伦要塞外壳的液态金属。雷射炮可以蒸发一部份,但金属蒸汽很快就会冷凝降回外壳表面。这就是把雷射的瞬间能量投掷杀伤的时间拉长以减低损害,这些防御方法在船越大预备空间越充足的时候越可能被使用,故大型舰对雷射防御力会较强。虽然雷射有这些缺点,但是其精确度,射程,弹药量高以及最重要的价格便宜的优点,应该会成为太空船的基本武器配备才是。

雷射炮与下面要讲的粒子炮还有个特点,就是无法预知也无法闪避。因为那是以光速或是极近光速前进的武器,唯一的侦测方法就是其打到舰身上发生的震动。当然如果是阿姆罗、夏亚之类的NEWTYPE的话可以感应敌人心理从而预知其行动而进行闪避动作,但NT素质过低的杂鱼就办不到了。「必躲」的精神指令应该只有NEWTYPE办的到才是。这是0083里面有个小BUG,某一幕中浦木曾经先看到闪光而躲过光束攻击。勉强要解释的话只能说他看到的闪光是敌人MS的机体反光,不然他就得是NEWTYPE才行。
 楼主| 发表于 2012-7-16 10:04:33 | 显示全部楼层
2.粒子光束炮(ParticleBeam)

粒子光束炮简称为粒子炮,它也算是导能武器的一种。通常人们把雷射炮与粒子炮这些导能武器通称为光束武器(BeamWeapon,BW),这是因为粒子炮打出来的粒子团速度依种类的不同可能会到光速的90%以上,加上在地球上实验室里加速器的高能粒子束与大气分子撞击发光现象会形成一道漂亮的光束的缘故(宇宙中就不会如此了)。

粒子炮有很多种,基本上可分成带电与不带电两类,各有其特性与优缺点。荷电粒子炮所发射的粒子团带有电荷,视种类的不同正电荷或是负电荷都有可能。其优点是构造会比较简单,同时电荷特性会对目标的电路造成短路这些的附带伤害。当然这只是附带的,主要的破坏还是打洞。其缺点则是有效射程较短,因为荷电粒子团本身的粒子会互斥,因此会很快的扩散开而降低威力。再来就是它易受磁场偏转,故在地球或是其它具有高磁场星球周边使用的弹道偏转会让射击解算处理十分困难。

中性粒子炮则没有上述的缺点。由于弹药是用中性粒子,因此没有弹道受磁场影响而偏转的问题,也没有荷电粒子炮的互斥问题,使威力随距离下降的扩散效应也几乎不会发生。中性粒子炮通常会比较复杂些,有中子光束炮,发射中性粒子的粒子炮(例如发射氢离子在其出炮口时导入电子使之回复电中性),或者是电浆炮(电浆是电中性的)。粒子炮的优点是威力通常比雷射大些,因为具有质量的关系。要携带弹药,但质量较少。所以虽然比雷射炮多耗些储存空间,还是比飞弹或是大型炮弹这些省。

粒子炮还有个特性,就是可以随时调整质量与弹道速度。例如以同样的炮管而言,若把发射的粒子团质量增加,就可以增大破坏力。不过弹道速度会因此而下降,也就是说精确度也会跟著下降。但这可以依目标距离来进行自由调整。如远一点或是小而高机动的目标使用较高速较轻的弹头攻击之,较近与较大较迟缓的目标则可以用较低速的大弹头来打。如此精度的降低便不至于有太大的影响,反而能更有效利用弹药与能源。

粒子炮的缺点是精确度与有效距离会比雷射炮低些,因为毕竟达不到光速。粒子团本身是可以一直增加能量来加速,但速度的增加会在接近光速时递减,丢进去的能量会增加粒子团的质量而不是增加速度,当然这可以增加破坏力,但对精确度的帮助就不大了。故基于经济因素,粒子炮弹道速度大致会限制在光速的95%左右。

其次就是粒子炮的加速器会非常长,比雷射炮的长多了(雷射炮大的部份主要是反射镜的直径)。使用环形的回旋加速器可以缩减体积,但有一个问题,就是在其切线方向会放出致命的辐射,几乎没什么挡的住。有个想法是用组合的方式,以环形轨道在其切线部份拉出线性轨道来发射,但还是要仔细安排让乘员避开辐射区。因此粒子炮的设计与装备会比较麻烦,系统会比雷射复杂,体积会比较大。

以上也就是银英传里的光束炮主要都集中在舰首的原因了,有很多人都质疑这点,但其实那是合理且是必然的(不过我不认为杀人魔王田中是因为知道理由才这样设定的)。能够在远距离击毁敌方大型军舰的粒子炮,其线性加速轨道会长到塞不进炮塔里,其长度甚至可能占舰身长度的90%以上,同时大型雷射炮的震荡管也有一定的长度,反射镜直径也会相当大。

而能装在炮塔里朝四方开火的主要会是中小型雷射炮,因为炮塔的长度限制会大幅减低粒子炮的弹道速度与威力,从而限制其精度。而雷射炮塔的弹道速度不会降低(光),只是出力也不会很大。因此炮塔的功用主要是当作近迫防御武器,用来拦截接近的飞弹与战机这些皮薄的东西。注意这里的「近迫」指的至少也是几千公里以上的距离。

有一点要注意的是,射程从数百公尺到上百公里的步兵用微型光束兵器主要会是以粒子炮为主,反而不会是雷射炮。前面说过雷射的聚焦力跟镜面直径有关,而细细的枪管会限制反射镜直径,反射镜直径太小也会因为镜面散热的问题而有能量投掷限制使威力与射速降低,所以单兵用或是MS的微型光束枪发射的主要会是粒子光束而非雷射。


粒子束的速度与威力跟加速轨长度有关,跟枪管直径没什么关系关系,而枪一般都是长度远大于直径的。小型雷射武器作成战舰的炮塔炮管会较短但是会比较粗,从外表看起来甚至可能只是一个半球形而看不到炮管,要作成单兵用或MS用的武器则会变成粗短的管子,大概就象是短管火箭炮之类的样子。但是粒子炮受限于枪管长度,其射程远比同威力的雷射短。所以即使是使用具有战舰主炮威力的光束来福枪的钢弹也得很靠近目标才发射,战舰的话就是远远的射击了。

基于一个重要的因素,个人认为粒子炮将会是太空战斗中的重要,甚至是主要武器。关键就在于粒子炮乃使用质量弹头而非雷射炮的能源弹头。

一般粒子炮的质量弹头是以撞击的方式来发挥威力,在能源传递数量级上与雷射炮相比不会有非常大的差异。和一般的观念完全不同的是雷射炮与一般粒子炮的打洞方式对于太空战舰上并不一定能造成致命伤害,这跟工业革命以前,战舰火炮没有爆炸弹头的海战非常类似。因为设计结构与工程上的因素,太空军舰将会具有极为强大的防护能力。除非把敌舰打的千疮百孔,否则几发命中弹是很难让其失去战力的。详细的原因会在以后的太空军舰设计篇里提到。

但如果粒子炮发射的是反物质弹头的话那就是完全不同的两回事了。反物质弹头击中目标时,将会与目标的正物质发生歼灭效应放出能量,也就是说会发生爆炸。一毫克的反物质击中目标时,将会与目标表面的一毫克物质发生反应,总共两毫克的质量将全数转为能量。而这个能量则相当于430吨黄色炸药爆炸的威力,直接命中在船壳表面产生的430吨当量等级爆炸足以在瞬间重创乃至于摧毁一艘十万吨级的战舰,即使目标侥幸没有解体也会立刻丧失战力。举个浅显的例子,这相当于860发2000磅炸弹同时在尼米兹级航空母舰甲板上爆炸的威力。此外,反物质对消灭的破坏效果乃是来自于舰体表面的爆炸反应,而非雷射炮与一般粒子炮的穿透打击效应,故属于一种可以扩散破坏面积的攻击方式,因此其破坏力将远大于雷射武器。

注:一发2000磅炸弹装药量约为1000磅出头,约500kg。

以反物质粒子炮而言,做为弹药的反物质可能会以反氢离子或是反氢电浆的方式制造,并以磁场封闭储存之。由于粒子炮可以在开火前任意调整弹药投射量,故可以视目标种类与其距离之不同来选择不同的当量应付。这代表弹药总当量威力/总质量是固定的,但单发威力与可供射击次数则可视使用状况任意调整。例如总共携带10公克的反物质则共有430万吨TNT当量的总威力,能够以1毫克/430顿的射击模式发射10000次,或者用0.5毫克/215吨的的较低威力射击模式发射20000次。因此在使用弹性上非常大。

反物质粒子炮的使用有几个问题。其一是弹药的来源。反物质的生产耗能庞大,产量亦将极为稀少。一般的想法是在近太阳轨道配置大量太阳能光电板,用以驱动环绕太阳的环形粒子加速器来大量制造反物质。但即使采用此种最经济的方法来生产,反物质的产量仍将十分有限,价格也会十分昂贵。

第二个问题是反物质需要消耗相当大的能量以磁场封闭或是惯性封法来储存之,同时其运输的管线需要经过仔细的设计,采用集中储存法的话任何储存与输送时的失误都会立即造成致命性的大爆炸而毫无挽救的机会。为了要避免这个问题,应当会采取大规模的细胞室(CellRoom)储存法来微量储存,比如以十万分之一毫克为一个储存单位。这样即使一个细胞室故障让反物质漏出而发生歼灭反应也只有4.3公斤的TNT当量威力,不至于立即摧毁船舰造成无法挽回的损失。特别是在战场的严苛境中更需要此法来保证整个作战系统的安全运作。

但如此一来前述的10克反物质便需要十亿个细胞室来储存,这会让整个储存系统的重量与空间极为庞大,且其连结输送管路会十分复杂,并需要消耗十分庞大的动力。故小型船舰可能没有足够的空间与动力可以容纳大量的反物质储存细胞室,更大的问题是由于系统的复杂会使其造价十分惊人,这就会严重限制它的运用范围。不过只要在设计粒子炮时将反物质弹药的使用纳入考量,则粒子加速轨道将可以共享。也就是说设计来发射反物质粒子炮的炮管可以同时用来发射一般粒子团弹头或反物质团弹头,这可以增加运用弹性。但反物质粒子炮的运用最大的问题应该是反物质弹药的成本才是。受限于成本,其数量将会十分稀少。

反物质粒子炮的另一个特点,是它可以让轻型舰在近距离内具有击毁重型舰的火力,这是因为其威力来自于每发炮弹质量,而不是射击威力。当然,前提条件是轻型舰要能装的下反物质发射/储存系统才行。一般而言,粒子武器的弹道速度与使用的加速轨长度,以及动力源大小有关,在射击普通粒子团弹头的粒子炮里,这也直接影响其弹头之撞击威力与穿透力。

但反物质弹头的破坏力主要来歼灭效应而非撞击效应,加速轨的长度并不直接影响其威力。因此若轻型舰能装上反物质发射/储存系统,则其破坏火力与大型舰的差距便能够缩小。

一般而言,轻型舰的粒子炮可能由于加速轨长度较短与动力输出较低,因而使精确度与有效射程皆远低于重型舰,于是在远距离为了获得较高的精确度,必须使用较轻的弹头,这导致其在远距离接战时必须在火力与精确度上做一取舍。唯有在近距离可以在相同的精确度下使用威力足以击毁重型舰的较大弹头。

重型舰由于体积庞大,故可以容纳相当长的加速轨道与提供巨大的出力,使其具有很高的发射速度与极高的精确度及有效射程,当然在近距离时也可使用比平常更大的弹头,不过其在远距离射击的弹头威力已足以击毁大型目标,故并不需要于近距离提高弹头质量。这代表重型舰会倾向于远距离炮战,而轻型舰则必须拉近距离以增加威力。

其次就是由于动力源、冷却系统与储存系统空间的差异,重型舰的射速应当会远高于轻型舰的射速,而其携带的弹药总当量也会远大于轻型舰。也就是说,在射程、射速、携带弹药总量与单发投掷质量/威力上,重型舰会高于轻型舰,但若能依靠反物质的特性,在近距离轻型舰仍有击毁重型舰的机会。当然,太小的船舰会没有足够的弹药储存空间因而无法使用反物质粒子炮。
 楼主| 发表于 2012-7-16 10:04:55 | 显示全部楼层
3.电磁道道炮(RailGun)

所谓的电磁道道炮,便是用电磁加速轨道发射弹头的武器,简称为磁道炮。从这个定义来看,磁道炮跟粒子炮其实是相同的武器。只不过后者发射的是极微质量的粒子团块,前者发射的是大质量的物质而已。地球上使用的磁道炮发射的弹头多半只有数公克,至多不超过十公克,这么轻的弹头只要以数公里的秒速发射便可以轻易击穿任何战车装甲。但大气中使用磁道炮是有限制的,过高的弹道速度会让弹头与空气剧烈摩擦而将其烧毁,跟流星一样。但太空中便没有这个顾虑了。

为了对付大型军舰,太空战斗中磁道炮发射的主要是公斤级的弹头,弹道速度至多达到秒速数百km到数千km,再上去就很困难了。这是因为磁道炮由于弹头体积与质量太大,故无法像粒子炮一样能够经由环形的回旋加速器进行长时间加速,只能完全靠线性轨道,所以其加速轨必定比粒子炮短很多。加上弹头质量大,同样出力下加速度会比较低。

例如假设加速轨道长一千公尺,则根据中学的速度计算物理公式,我们可以算出在一千万G、一亿G与十亿G三种加速度下所得到的炮口初速:

V^2=2*a*s

(10000000*9.8*1000*2)y.5/1000=443km/sec

(100000000*9.8*1000*2)y.5/1000=1400km/sec

(1000000000*9.8*1000*2)y.5/1000=4427km/sec

这是使用Windows小算盘的自动计算公式,*9.8之前的数字即为以一倍地表重力为单位的加速度的倍数,大家可自行修改此数字,然后把等号(含)以前的部分复制到剪贴簿,再贴到小算盘里,即可立即求出答案。

从以上的计算结果可以看出,即使施以十亿个G的加速度,一千公尺长的磁道炮的炮口初速也只有秒速4427km而已。这个速度与光束武器的每秒三十万公里比起来实在是低的可怜。距离一光秒的目标光束武器只要一秒便可以击中,换成弹道速度4427/km/sec的磁道炮弹则要飞行68秒才能打到,并且前提还是炮管中的炮弹加速度还得要能够达到十亿倍重力才行。

另外,由于过大的加速度会摧毁所有电子机械仪器,以及高加速时弹头承受的巨大电磁场干扰(此为电磁加速原理,任何电磁加速系统均无法避免这个问题),故高速发射的磁道炮里面将无法装备任何引擎或是导引装置。这也就是说在同样的命中率下,其射程会远低于光束武器。所以磁道炮在远距离时对于机动目标几乎是没有用的,只能用来对付数千公里内的机动目标。

虽然如此,磁道炮却有个光束武器没有的特性,就是由于宇宙中阻力趋近于零,这种系统的射程几乎是无限大,其威力不随距离而降低。而光速武器与粒子武器则会受到弹头扩散的问题而有一个射程上限(不过粒子武器扩散的影响比雷射武器小的多)。所以磁道炮会成为太空船在距外对付大型固定目标的一种好武器。例如浮游要塞、小行星基地、月面基地或是太空殖民地这些具有稳定轨道的目标。

以上这些固定基地不需移动,没有运动所需的燃料消耗问题,所以其质量与体积可能会比军舰大上数千倍到上万倍之多。这使固定基地能够装备大量远较舰艇更长轨道与更大反射镜的粒子武器与光束武器,其火力与射程当然也就会比战舰上的同类武器高上许多。而应付这些固定目标最好的方法便是在其射程外发射大量威力不随距离而降低的磁道炮弹头。

由于固定目标的轨道十分稳定又难以机动,故命中率不是问题。而磁道炮弹药价格也会比使用飞弹低很多,所以磁道炮会成为远距离对要塞与对地轰击的主要武器。但需要注意的是对于攻击星球表面目标而言,它只能轰击没有大气的星球,如月面基地或小行星表面的基地。射击地球表面基地的话,磁道炮弹头有可能会在大气中烧毁,或至少受到空气干扰而使精确度降低许多。

具有大气护盾的星球会是难以攻击的目标。高能雷射会被大气吸收或偏折而大幅影响威力与射程,粒子炮则会被大气分子干扰而影响弹道,威力也嫌不足。反物质粒子炮则由于会与大气分子产生大量歼灭效应因而会使其在大气内的弹道无法预测,甚至在空中便被消耗完毕。唯一的方法是用低速磁道炮发射表面有隔热层,速度不高的大质量弹头轰炸星球,为了顾及威力,可能还得动用核子弹头。总之一句话,攻击具行星并不容易,特别是具有大气层的行星更是困难。这在以后的行星强袭登陆篇会有更深入的解说。在这里要指出的是低速大弹头的磁道炮很可能是行星降下作战部队所能获得的唯一的舰炮支持火力。而这种弹头质量与体积太大,无法与一般太空战斗中用的磁道炮弹头共享线性发射轨,必须使用特别(轨距比较宽)的轨道。幸好此种轨道亦可用以发射飞弹,不至于沦为单一用途而减低整体的战斗效益。

4.飞弹(Missile)

大家所熟知的飞弹也会是太空战斗中使用的的主要武器之一。但有几点要注意,与一般印象稍微不同的是太空战斗中用的飞弹会非常大。目前只有一种飞弹可大约类比,那就是洲际飞弹。原因非常简单,小型飞弹不可能追的上也不可能打的中目标。现今的飞弹之所以可以做的很小,小到甚至可以由单兵携带完全是因为使用化学推进剂。在目前所有推进系统中,最简单也最小的推进系统便是使用固态燃料的火箭引擎。大家应该都曾放过冲天炮,没错,那就是最小最简单的火箭。其它如液态燃料火箭与喷射引擎之类的体积就会比较大了。

需要注意的是,在太空船还在用化学火箭当作主要动力的时候,太空战斗是打不起来的。这就像还在使用蒸气机的年代不会直升机空降突击作战,还在使用螺悬桨飞机的时候不会有洲际飞弹一样。当人类进行大规模行星间飞行的时候必定至少是使用核能引擎,可能是核分裂,更可能是核融合动力。这才能够让太空船以经济上能够接受的速度与价格在行星间航行。而想追上核动力太空船就必须要使用核融合动力的飞弹才行。使用化学火箭的飞弹其速度在光束近迫防御系统眼中不会比爬行中的乌龟快多少。

核引擎是可以在技术成熟后缩小,但基于其特性,能够缩小的程度会有限制。比如核电机组也没法缩小到能够装进汽车的引擎箱里面。能够装到飞弹上的最小引擎有多大?这可以依照飞弹的飞行性能来分析。因为是在侦察到敌人位置(至少是大略的位置)后才发射,飞弹需要的是在几十分钟内的短时间内加到最高速的能力,不能像太空船一样可以悠闲的花上几十个小时甚至数天的时间来加速。因此体积小,高效率但低推力的核能离子推进系统就被否决了,必须使用具有大推力能在短时间内加速的热推进系统,这就表示几十吨甚至上百吨的推进系统是跑不掉的。再者,核融合燃料多半是轻元素(核分裂则使用重元素),因此燃料箱会有庞大的体积。

而为了要增加速度追上太空船,甚至要能够达到军舰的十倍以上的速度以尽快穿越其近迫火力圈,飞弹的燃料必须带的够多,同时弹头重量必须尽量缩小。又因为大型军舰非常不容易击毁,而太空中的军舰会比地球上的同级舰更不容易被击毁(原因在以后的章节会有进一步说明),因此弹头威力必须够大,数百吨到上千吨TNT当量威力的弹头是跑不掉的。但为了速度需求又不能真的装上数百吨重的炸药弹头,于是只剩下一种可能性:低威力的战术核子弹头。

根据前述推论,我们可以大致描述一下太空战斗中飞弹的形式,基本上本体形状与大小和现在使用的火箭非常像(目前的ICBM重量多在数十吨到上百吨左右),但将会采用最先进的小型融合引擎,使飞弹弹头的终端速度能够达到秒速数千公里甚至数万公里以上。这使其得以在数十秒内突破目标的近迫火力网以增加生存性。其携带的弹头应该具有千吨级核武的威力,而为了在强大的光束武器近迫防御网中残存下来以击中目标,可能会采取多弹头的方式。

例如一枚飞弹携带十个弹头,在目标的近迫火力圈外释放,弹头群分布面积则以目标为中心含盖一个区域以增加目标闪躲时的命中率。现在假设核融合火箭引擎可以缩小到每颗50吨的水平,则一枚100吨重携带十个500kg重的末端归向核弹头的飞弹速度大约会在秒速8600公里左右。如果能把引擎缩小到20吨,则整枚飞弹的大小便可以减半,可以用50吨重的飞弹携带同样数量的弹头达到一万公里的秒速。换句话说,引擎技术是飞弹运用的关键。

至于飞弹的优点则和轨道炮相同,射程几乎是无限大的,威力也不随射程降低。只不过飞弹具有导引能力,所以有效射程会远比磁道炮大许多。只要得到目标座标矢量的话,飞弹甚至可以射击数十光秒到数光分距离远的敌人,当然这得花上数小时的飞行时间。攻击远方敌人时飞弹会在发射后把燃料烧到剩一点点以加到最高速,之后关闭引擎采取惯性航行,直到接近目标后再开启引擎做最后的修正,进入敌人近迫火网前切离推进段,释放大量体积与热讯号较小的弹头以增加生存性,而推进段的最后用途便是作为混淆敌人拦截解算的诱饵。

磁道炮受限于轨道长度因而加速过大而无法装备导引与航向修正系统,速度也很难超过秒速一千公里。飞弹的加速度虽然比磁道炮低很多,但由于可以长时间的加速,故能达到非常高的终端速度。又因为装备了归向系统,在远距离时的精确度会远高于磁道炮与光束武器等直接射击的无导引武器。加上可以装备核子弹头,威力会远高于其它的武器,这方面上大概只有反物质粒子炮可以与其相比。

飞弹的最大缺点就是其价格。太空中的环境十分单纯,寻标与导航系统的技术难度并不大,因而这方面的成本不会多高。问题是每枚飞弹都需要一个引擎,还得是体积与重量最小、技术层次最高的引擎,核融合引擎并不像冲天炮一样可以在地下工厂随便做出来的。这种引擎会非常贵,且还是一次性使用就消耗掉了。加上飞弹的体积大,速度比光束武器慢许多,因此是可以预警也可以被干扰乃至于拦截的。军舰上也会有一堆雷射点防御炮塔,因此会有大部分的飞弹击中目标前就被拦住,唯一的方法是发射大量飞弹进行饱和攻击,期望其中能有一两枚能够击中目标。实际上也只要一枚命中弹头便可以击毁敌舰。但如此大量使用又会导致极高的成本,这就是飞弹系统要面对的最主要的问题。而使用多弹头可以缓解飞弹成本的问题,比如十枚弹头的飞弹比起单弹头飞弹而言,可视为引擎减少为十分之一,但此种减少效果有其极限。

有一点要特别提出的就是核弹头(或反物质弹头)等大威力弹头的破坏半径,这是常受人误解的地方。太空中和大气中是两个截然不同的环境,一般大气中的概念并不一定适用于真空环境。大威力核弹在大气中的破坏主要来自于冲击波损害,所谓的火球以及之后的冲击波破坏乃是因为核爆放出的能量(主要是光子)对周围的大气分子施以能量,将其瞬间加热,爆心产生的气体游离电浆团便是火球,被高速膨胀推出的气流锋面便是冲击波。

换句话说,大气是作为传递核爆爆震破坏(震波)的主要媒介。但太空中是真空的,没有可以传递破坏的媒介,因此不会有震波。此外,大气内核爆会由于发生「康普敦效应」而产生强大的电磁脉冲波(EMP),但康普敦效应的前提是要有大气分子参与,故于真空中引爆的核弹不会产生多少电磁脉冲波。因此太空中的核爆的威力只能以光子流等高能幅射线的方式辐射出去,因此实体与电磁破坏半径会远比大气中核爆小许多。

另外,核爆产生的中子流、辐射线等对人杀伤半径则会比大气中大,但辐射线却比较容易用厚厚的船壳挡住。又由于太空船的速度非常快,至少是秒速数十公里以上,惯性会非常大,太空又没有阻力可以煞车,所以太空船之间都会有数十到数百公里,甚至可能数千公里以上的避碰安全距离。而即使间隔上千公里,船舰彼此也还会在彼此的近迫武器射程内,因而仍然可以互相掩护支持。

因此太空战斗中运用的核子飞弹必须以直击来摧毁敌舰。即使是最强力的爆破弹头也只能一次摧毁一艘军舰,不会有一次爆炸卷入摧毁数艘船的情况发生。除非是超新星等级的恒星爆发威力那才有可能。不过那已经是终极武器了。

最后,基于加速的需求,太空中使用的飞弹会有射程下限。使用国中物理公式V^2=v^2+2*a*s可以算出物体移动距离与加速度之间的关系。在给定加速度与终端速度的情况下代入此公式可以求出物体达到最高速度所需的飞行距离。假设某飞弹具有100G的加速度,10000km/sec的终端速度,另外初始速度忽略,则所需的加速距离约为170光秒。若加速度提升到10倍的1000G,则所需的加速距离降为17光秒。低于这个距离飞弹就达不到最高速度。因此太晚发射的飞弹会因为无法加到最高速度,导致非常容易遭到对方的光束近迫系统的拦截。

附带一提,上述17与170光秒的距离可以视为飞弹需要的虚拟加速轨道。这其实就是飞弹与电磁道道炮的最大差别。因为飞弹的虚拟加速轨远比电磁道道炮长的多,在长时间加速下的最终速度当然就会远高于电磁道道炮的炮弹了。
 楼主| 发表于 2012-7-16 10:05:23 | 显示全部楼层
5.广域光束兵器(WideAreaBeamWeapon)

这是种在科幻小说与ACG里常常可以看到的有趣武器系统。基本上在这里要指出这种武器由于限制太多与不切实际,其可能性并不高。

首先必须注意的是,雷射是聚焦发射的,反射镜直径必定大于具有杀伤能力的靶区直径。道理非常简单,用以将雷射聚焦反射的反射镜必须全部承受其威力并将其反射出去,既然雷射打到敌舰上可以对目标表面投掷能量造成破坏,则其同样会对反射镜造成伤害。雷射之所以不会在打到敌人之前烧穿自己主要是基于以下三个原因:

一、反射镜比靶区大,故单位面积承受的能量密度较低。

二、反射镜的能量吸收率多在0.1%以下,吸收率远比比船壳低,船壳由于需要有匿踪以及散热需求等而不能做到过高的反射率。

三、反射镜会有充分的冷却系统支持来降温。

基于以上三个原因,反射镜必定远大于杀伤范围,直径十公尺的雷射炮不会有超过一公尺的杀伤范围。想做广域雷射武器,反射镜面(或者亦可说是发射天线)的直径可能需要达到千公里到数万公里之谱,也就是说必须做的跟星球表面一样大。

粒子武器也相当类似。如果想在一个区域内投掷高密度的能量,发射源的体积(特别是横截面积)则必然会更大,否则在光束发射出去破坏敌人之前会先破坏自己。因此广域光束兵器必定有庞大的体积,这就是此类兵器的限制。

至于不切实际的地方则原因更明显。假如你知道敌人拥有广域光束兵器,你会把部队编成密集队形给人家打吗?很明显的这是不可能的,一定会采取疏散的方式。一般而言舰队即使间隔数万公里,仍然可以用光束武器有效的互相支持。如果间隔十万公里,则以光束兵器而言只需要约0.3秒的时间便可抵达,而一个广域光束兵器想要在此种编队密度中打到两艘以上的船,则光束源直径必须广达三十万公里以上。基于此一原因,对于广域光束武器的防御远比其运用简单许多,故此种兵器的制造与使用非常不切实际。

广域光束兵器的唯一可能性在于一般系统的附加使用价值。比如大规模的太阳能轨道发电厂便有很多光电板可以反射光线,用作光帆船推进支持的反射式光压推进系统也会有大量聚焦反光板。这些反光板基本上可能会配置在极近的太阳绕极轨道上(不会在太阳黄道面上,这是为了尽量减少对于行星的日光遮蔽效应以免对行星生态环境造成影响),平常用以发电或推动光帆船,必要时则可以使之高度聚焦造出一个高能光束集中区,以来执行区域性的攻击任务。

例如光压推进用的光束聚焦阵列,那在平常时是用来聚焦造出一个广域性的光束航道提供光帆船团一个稳定航线,战时只要缩小此通道的面积便可增大其能量密度,这就可以有效烤焦覆盖区域中的任何物体。其强度并不需要达到能够瞬间气化融化目标的水平,只要使指定区域内能量密度高到船舰的吸热速度大于排热速度,使其热平衡温度上升到数百度的水平,便可以有效的摧毁敌舰。也就是把敌舰变成烤箱,盘子上放的则是里面的乘员与精密电子系统。并不需要以一般电影与动画中那么轰轰烈烈的方式来摧毁敌舰。

而此种兵器至多也仅能一次摧毁数个到数十个目标,不可能一次摧毁数千个目标。最后要提醒的就是,没有在光束杀伤覆盖范围内的目标不会有任何损伤。即使是人穿了太空衣在光束笼罩区域旁边一公分也不会受任何伤害。能量只会集中在通道中,不会扩散到旁边去。这是光束的特性。

6.其它武器系统

其它除了前述这些武器之外,还可能由于科技的进展而出现一些奇奇怪怪的武器系统。其中值得一提的有几种:

微机械炸弹。这是运用能自我复制的微机械做为武器。其大小可能是分子等级,将其释放以后,可以寻找事先设定好的原料来自我复制。如果设定的复制原料是敌人太空船的构成原料,则可以看到微机械附到敌人太空船上大量繁殖将其分解的情形。不过这也不是无法防御的,最简单的方法便是将船壳通上高压电或是加热之类的,而使用微机械也有反噬己舰的可能性。这种系统的可能性将视技术的发展而改变。

WARP炸弹。这算是威力最大与效能/价格比最高的一种武器。将随便什么东西装上瓦普引擎,设定其跳跃目标点为敌舰的位置,使其进行强迫空间跳跃,则就会在敌舰内部出现物质重合的情况而发生强迫性的核融合反应。当然此种系统的前提是发展出WARP技术,并将其系统微型化到一个程度才办的到。只要WARP系统的价格能压到够低,这种系统可以说是最有效率的。甚至可以把军舰的垃圾压缩一下,WARP到敌舰内将其摧毁,一举两得,还兼具环保功能。

太空战斗中还有一部份武器系统主要应是在行星降下作战或是太空船太空舱组的强登作战中使用的武器。这基本上是步兵用而不是太空船的武器系统,最有可能被运用的是人形作战兵器。但不是机动战士里面那种MS,应该说是单兵用的动力装甲服。这并不是什么不得了的技术,实际上美国现今使用的制式太空装便是一种个人太空船。为了使士兵能在真空的环境下长时间活动,太空装自然是免不了的。又为了在强大敌人火力下生存,最好能够加上一些装甲等防护能力。结果就是单兵动力装甲服了。这种装甲服可能从作业用的太空装改过来,体积至少要小到能够通过通用的舱门口。

实际上由于太空处于无重力环境,太空作业并不需要运用到大型机器人,所以工作机组本来就不会很大。再者过大的机器人也会难以操作,最容易操作的机器人便是将人完全包起来,由乘员肢体运动直接控制的系统。这就是所谓「外骨架」或是「延伸骨架」的概念。将其加上装甲与武装便是很好的单兵动力装甲服了。补充一下,这类装甲服的环境调节一定会作的非常好。会不断累积热量的是目前注重便宜不重效率的化学防护装。现今的太空装就有充分的空调让太空人能够长期活动,当然目前受限于动力源因而独立活动时间有限。但这在技术层面上是可以解决的问题。关于这部分的问题,将再之后的行星强袭登陆篇内作更详细的讨论。
 楼主| 发表于 2012-7-16 10:06:26 | 显示全部楼层
一、太空作战中的目标侦测方式

想要作战,首先便是要能找到敌人,其次则是要防止自己被敌人找到。至于在太空中如何侦测目标呢?基于环境与匿踪的需求,主要会以电子光学监视系统的被动侦测为主,而不会是目前的电波雷达。使用电波会有两个问题:

(1)失效的机率极大

即使是在今天,结构外型与电波吸收材料的发展已经使电波的索敌能力大幅弱化。而将来这方面的进展则会更明显。此外太空船外型没有航空机之类的气动限制,因此能够以匿踪为设计时第一优先需求,无所不用其极地降低RCS(雷达反截面积),故使用雷达可能根本侦察不到目标。

(2)泄漏己方位置

雷达波一去一回,在己方能接收到足够强度雷达波以判定目标的距离之前,敌方会先以此来定位己舰的位置。假如雷达侦测范围是10光秒的话,来回即为20光秒,这表示敌方在20光秒外便可接收到相同强度的讯号从而得知己方的位置。

基于以上两个原因,雷达的唯一效用可能只剩航道陨石搜索闪避的功能,并且主要装在民用船只上。至于作战用的军舰则会使用被动的电子光学监视系统。

所谓电子光学监视系统,事实上就是一种电子光学望远镜。一般的望远镜必须将目标拍成照片,但照片的数码化需要人力介入故难以进行持续监测。而电子光学望远镜乃是使用大量的CCD阵列(注)构成的望远镜。此种望远镜获得的的分辨率取决于CCD的质量与数量,扫瞄到的资料直接以数码档案的结构储存并以计算机进行全自动的处理。配合强力的计算机,此类系统可以对广大宙域进行长期的全时监视侦测扫瞄。此外,军舰除了电子光学望远镜外,也会装备其它的光学望远镜,比如用以侦测中红外线与远红外线的系统。

注:CCD,ChargeCoupledDevice电荷耦合元件,用来作数码相机、望远镜的基本感光构成元素,其感应范围为波长在400~800nm的可见光以及波长800~1200nm的近红外线区段。目前最新型的CCD有更大的感测范围,除原本频带外,红外频谱感测范围可以增加到1200nm~1500nm,也就是涵盖近红外线的全部频宽。此外也已经出现可以侦测波长在350nm~100nm的紫外线频谱CCD。

电子光学监视系统基于其可以长期监视大范围面积的特性,于70年代就开始被用在需要24小时监视地表的早期预警卫星上。如美国的DSP国防支持计画里的早期预警卫星便是使用电子光学技术,目前的DSP卫星携带一组口径3.6公尺,拥有6000个CCD元素的望远镜,可以从三万六千公里的同步轨道上侦测到地表飞弹发射时的尾焰。而用以接替DSP卫星的次代系统名为SBIRS(SpaceBasedInfraredSystem,天基红外线系统),分成高轨与低轨两个次系统,拥有更强的能力。除了可以侦测飞弹外,还可以侦测喷射机的尾流,甚至可以侦测轨道上已与推进段分离,温度极低的飞弹弹头。并且其由于同时配置了IR扫瞄阵列与凝视阵列,使其能够在扫描一个较宽区域的同时集中探测一个较小的区域。当有导弹发射时,SBIRS高轨道卫星的扫描阵列可迅速侦测导弹排出的尾焰,而凝视阵列则能持续跟踪尾焰,此种方法使其能连续精确地跟踪导弹的轨迹。

另一个例子是美国的陆基远太空光电监视系统(Ground-BasedElectro-OpticalDeepSpaceSurveillance,GEODSS)。GEODSS是美国专门用来监视地球轨道上所有人造飞行物,特别是高轨卫星的侦测站。此系统为在地球纬度相近的地区建立5个光电观测站以组成一个全球光电空间监视网,这5个工作站分别设在白沙(新墨西哥)、毛伊(夏威夷)、大邱(韩国)、迪亚哥加西亚岛(印度洋)、葡萄牙南部地区。GEODSS系统使用电子扫描技术,将望远镜观测到的图象转变成电信号,经计算机处理,滤掉目标周围的星体,在电视监视器上以光纹线形式显示目标。此一系统所使用之主望远镜为口径一公尺,由4096x4096个CCD元件组成的阵列,可以在同步轨道上(三万六千公里)侦获篮球大小的目标,效率远高于雷达或旧式的光学望远镜。

值得一提的是,GEODSS系统在经过1996至1998年的改装,换装新型CCD元件后,投入近地物体监视计画(Near-EarthObjectProgram)以侦测可能对地球造成威胁的小行星体。期间内连续发现数个新的小行星,并且在任务中证实了其威力:改装后的GEODSS主望远镜可以在1AU(一亿五千万公里或500光秒,地球到小行星带前端的距离)之内侦察到直径100公尺等级的小行星体。


注意,此例中的系统是位于大气中的陆基系统,且NEOP计画里查找目标是本身不发热的小行星。同样规模的系统拉到太空中以免除大气干扰,加上以具有动力会产生废热的人造飞行体为目标,则侦测能力将有可能提升五至十倍左右。

注:美国空军太空司令部介绍GEODSS的网页,其中有白沙站的照片。

http://www.spacecom.af.mil/hqafs ... ts.asp?FactChoice=8[/url]

http://www.spacecom.af.mil/hqafs ... ts.asp?FactChoice=8[/url]

而将来类似但更先进的系统也会被配置在太空船上,成为太空船的主要侦测系统。在太空军舰上将会把使用宽频谱的光感元件阵列,或者也有可能混装不同频谱不同性能的元件组合构成整个阵列,这些元件阵列将以环带的型状布设在船壳上,并以光纤将收到的资料集中到舰内计算机中处理。而计算机将根据资料库滤除所有恒星、行星、小行星体与拥有固定航线的商船讯号,只留下不明的资料。此外,也有可能出现专职的侦察舰,即将舰体表面完全布满光感元件,以较高的元件数量来得到较大的单舰侦测分辨率。

不过,把光感元件直接暴露在外可能有易于受损的顾虑。此时也可能会稍微改良一下,将光感元件完全收到船体内,船壳外改布设单纯的光接收器阵列版(可能是光纤端子一类的),然后使用光纤线路将光子讯号收到船内,经过光量检测器、滤光镜(选择性路径)、分光装置等,最后再投射到光感元件上。如此不但可以物理上保护光感元件,还可在遭遇强光状态时,使入光先透过滤镜让能量降低至安全水平内,让系统能在强光环境下持续运作。最后更可以透过分光装置让光线同时进入对于不同波段敏感,或具有不同性能的不同光感元件或光学镜头内,以对入光进行全频谱的同步扫瞄处理。这种选择性的路径通过是电子光学系统的独门特技,目前已被运用在美国为NMD/TMD系统所发展的的最新型光学侦测仪器上。

底下是一个分散式全频谱同步扫瞄处理系统的简单流程示意图:——

分光装置——|-光感元件1-计算机1——|

|||-光感元件2-计算机2——|

光接收器——光量检测器——|||-光感元件3-计算机3——|——中央计算机

|||-光学镜头1-计算机4——|——

滤光镜——||-光学镜头2-计算机5——|

在宙域扫瞄策略上,则会将全天球划分成数百个区域,而光感阵列环带亦以一定数量的阵列构成群组,各群组分别负责各自的扫瞄责任区以进行全天球的目标扫瞄侦测,并在侦测到可疑目标时集中辨识加强分辨率,或使用大口径的望远镜执行进一步的目标辨识作业。

例如假设舰体某面阵列有共10k*10k的侦测元件阵列,则可以切成100个1k*1k扫瞄群分别对各自负责的空域实施扫瞄,但在某空域发现某目标时,立即集中此面所有元件对此目标实施高精度辨识,此时对此目标的识别能力等于一口气提升为分别扫瞄时的100倍。当然,群组分配比例可以视需求决定。

另外若是以舰队为侦测基础,更可以划分各舰负责的责任区各自扫瞄以增加反应速度,或是在需要时令全舰队针对指定区域集中扫瞄来构成具有巨大口径的多舰组合侦测阵列以提升侦测距离与分辨率。而舰与舰之间会以资料链统合整理舰队的侦测情报资料。一但侦获可疑目标,舰队可以指定不同的两艘船同时追踪目标,以三角定位来精确计算目标距离。以上这些动作都可以完全自动化,不需任何人工的介入。

例如目前ESA构想中的达尔文(Darwin)计画便是使用六具直径1.5公尺的小型太空望远镜组成的红外线干涉阵列望远镜,其等效观测能力相当于口径50~500公尺(平均约为250m)的单一大型望远镜。若使用更多的望远镜组成阵列,侦测能力自然也就会越高。
 楼主| 发表于 2012-7-16 10:06:45 | 显示全部楼层
注:达尔文计画的网址

http://ast.star.rl.ac.uk/darwin/http://ast.star.rl.ac.uk/darwin/

http://ast.star.rl.ac.uk/darwin/http://ast.star.rl.ac.uk/darwin/

需注意的是,这类监视系统乃是一种被动侦测系统。不会有电波雷达主动拍发讯号的缺点。但如果有需要的话,仍然可以使用雷射主炮╱副炮以低功率发射光束照射指定区域,再用侦测阵列接收其反射光来判定目标精确位置。不过大部分的情况下是不需要这么做的。

在这里我们必需考虑所谓的热力学第二定律:在自然界的过程里,热能只会从较高温处往较低温处传递。而将热能转换成动力的机器(例如太空船引擎)称为「热机」。无论任何热机,都只能将部份的热能转换成机械功,而其余的部分就会成为无法利用的废热流失。世界上没有百分之一百效率的热机,必然会在能量的转换过程中产生废热。

这个定律指出一件事,即太空船在引擎运转的时候必然会产生废热。而这个热讯号在电子光学监视系统的屏幕上将会呈现一个明亮的讯号。因此我们可以这么说:热力学第二定律注定太空船无法不主动放出讯号,也就注定其必然会被侦测到。

接著,由于太空中3k的背景温度和太空船的废热呈现一个巨大的反差,远高于地球表面目标和环境的温差,因此严重凸显了太空船本身的讯号,使太空船更易于被侦测。这使拥有巨大的电子光学监视元件阵列的太空船对于船舰目标拥有极高的被动侦测距离。以前述的GEODSS系统所展现出来的侦测能力等级来推估,配置于太空船上的大规模电子光学监视系统的侦测距离将可以达到数千光秒之谱。举个浅显的例子,这相当于一艘位于地球轨道的太空船可以使用其侦察系统搜获正位于土星轨道上的一艘长一百公尺的太空船(平均距离约十三亿公里,4300光秒)!而该太空船若以每秒一百公里的速度穿越这个距离则总共需时约为150天,即五个月。且如果使用舰队的集团整合侦察,则侦察距离可以再延长数倍。此外,从热源分布型态上可以大致辨识出目标太空船的型号。

由以上资料可以很清楚的发现一件事,太空船舰,特别是拥有先进侦测系统的军舰的侦测能力将会远远高于其武器射程与船只航程,这在过去的地球上是没有任何前例的。过去从来没有任何侦察单位能够在一个月以上的时间距离外侦测到敌人部队的情况,通常只有数小时的时间距离,只有构成完整组织的军团级、国家级侦察网统合协力下才能勉强获得数天到一周的侦察时间距离/预警时间,周以上的时间距离则通常只能由侦察以外的情报手段才能获得。而太空船舰几乎是每艘军舰都是单舰就具有这种超长程侦察能力,这完全是由于太空特殊的背景环境所导致的结果。

最后再提一下,这里所提到的侦测系统只有电子光学望远镜,不包含其它的系统,比如重力侦检器这一类东西。未来可能还会有其它更有效的东西出现,不过光只这一项,太空战舰就可以用的很高兴了。

又,基于能自动化运作、拥有长时间的宽广空域大量目标监视能力等特性,上述系统除装在太空战舰上,也会装在轨道卫星、太空站、浮游工厂或任何大型的太空平台上。其目的是为了要侦察接近的小行星体以防止自己遭到撞击。而各太空站的侦察平台将会互相分享资料,构成完整的的远太空小行星监视网,并在有需要时对各单位发出小行星体接近警告。此外,对于高速的微流星体、小型碎片与大型尘埃颗粒等防护则将会使用微波雷达在大约五千到一万公里的半径以内进行扫瞄,并使用雷射炮执行清除作业。

以上所说的是军舰使用本身的舰体感测阵列实施侦察的状况。除此之外,也有在必要时使用无人侦察装置实施长程搜索的方法。最简单的方法就是把飞弹拆掉弹头,换装侦察头(较小的球型感测阵列)与通讯装置,并发射到遥远的距离外实施侦察作业。此法可以弥补舰体侦察器的不足。

例如假设舰体感测阵列侦察范围是4000光秒,若想要对于8000光秒外的宙域实施侦察而派出秒速一百公里的侦察舰,需时五个月才能抵达能将目标区纳入侦察范围的位置。若是使用秒速一万公里的侦察飞弹,则大约在发射后70hr后就可以获得目标区的一些资料。虽然侦察飞弹的小型侦察头侦察能力远比不上军舰舰体传感器阵列,可能只能扫瞄飞弹外围数十光秒的区域,但三天后可以得到的少量资料无论如何都比五个月后才能得到的详细资料来的有用。

而敌人的点防御系统虽然有能力拦截飞弹,但距离要近到一两光秒内才有可能,因此若侦察飞弹真的被摧毁,在之前一定可以先发现敌人。

总而言之,这是一种无人的小型高速长程战略侦察机的概念。地球上的长程战略侦察机一定很大,可是宇宙中只要是自动飞船的话,航程就是无限的,因此一两百吨的小行飞弹就可以达到长程侦测的效果。
 楼主| 发表于 2012-7-16 10:07:14 | 显示全部楼层
二、反侦测的策略

相对于太空战舰的强大侦测能力,其反侦测能力就比较低了。

关于雷达匿踪部分几乎可以视为100%,也就是说,宇宙军舰是绝不可能被雷达侦测到的。这不是什么神奇技术,就在今日的地球上,匿踪技术便已经进步到非常接近此种理想的等级。目前世界海军最新型匿踪舰是2001年下水的瑞典Visby级飞弹巡逻舰,其匿踪能力强大到即使在海象良好的情况下,也要接近到22km才会雷达发现,恶劣海象下搜获距离则会减至13km,如果再配合电子反制措施,上述两种情况下被雷达发现的距离分别进一步降至11km与8km。这四个数字都低于其上所携带的武器射程,甚至也低于目视距离。而未来在太空战舰上,雷达匿踪能力只会更好不会更差。

最大问题在于对于被动光电侦测系统的匿踪与反侦测。受限于热力学第二定律的根本理论限制,这个问题是无法可解的。所谓天要下雨,娘要嫁人,天意如此,谁都没办法。

有人可能会这么问:「任何定律都可能被推翻,说不定哪里一天热力学定律被推翻,或者出现了新的定律那也未可知啊?」

这个问题问的好,答案是如果哪里一天热力学定律被推翻,那么我们也不需要搞什么宇宙战舰光学匿踪了。因为若是热力学定律被推翻,则死人就可以复活了,到时还匿什么踪打什么仗?

以上这可是千真万确,不是说著玩的。不要以为这是在开玩笑啊^^

闲话休提。虽然做不到被动侦测的光学匿踪,不过也有增加敌方侦测难度的方法。但是需要注意一点,不管再怎么侦测,效果都很有限。绝不会像雷达匿踪一样能达到数千数万分之一,甚至完全匿踪的地步,能把对方的侦测效率降低一半就已经很了不起了。其策略大致如下:

(1)以背著恒星、行星的角度攻向敌人

这是最直接的想法的。这种战术自从飞机发明以来,是蛮受欢迎的战术。不过执行这种战术得要有个先决条件:必须知道敌人的位置,至少大致知道其来向。只有这样才能让自己移动到与恒星和敌人成一直线的位置。也就是说,得先侦测到敌人,或是设定对方行动路线才行。

这虽然有一些难度,但还是有可能的。因为光学系统还是会受到某种程度的逆光影响,因此位置的不同,背光与逆光的差异会让两方的侦测距离产生一些差距。而这不必完全背对恒星行星,相对位置够就会有一些影响。

需要注意的是,这种方法有使用限制,一般只能在火星以内的近日行星使用,即使在火星轨道,日照也只剩地球轨道的一半而已。在远一点的行星轨道,太阳的效果就会降低。而日照的威力是随距离的平方而下降的,在冥王星轨道看太阳时,只不过是一颗比较亮的星星而已。这在航海家二号飞过冥王星后,转身对太阳系作最后回顾时所拍的照片里面可以清楚的看出。

其次就是,即使一艘船在近日行星背著太阳,但不会就因此而使对方看不见自己。侦测系统仍然可以搜获背对太阳的目标,最简单的方法就是使用掩星效果。玩过天文望远镜人应该会知道拍摄所谓「水星凌日」的方法,那就是将望远镜对准太阳,放张纸片在观测位置上,则当水星横越太阳时,其遮住太阳的影子也会跟著投影在纸片上,这就可以清楚的看见「水星凌日」的效果。这种观察阴影的技术就是侦测背对恒星、行星目标的理论基础。

人类不能或是很难用肉眼看见背对太阳的目标,但这可不表示机器办不到。大部分人应该都看过在太空中直接拍摄的巨大太阳的照片,这些照片的存在本身就是最大的证据。

现实中存在有所谓的「太阳观测卫星」,主要工作就是专门拍摄太阳的照片以研究太阳。这一类卫星有NASA的先锋五号(Pioneer-5)、OSO系列一至八号(OrbitingSolarObservatory,轨道太阳观测台),SMM(Solarmax,太阳峰年)、TRACE(TransitionRegionandCoronalExplorer),NASA和ESA(欧洲太空局)的国际共同合作的SOHO(SolarandHeliosphericObservatory)、尤里西斯(Ulysses),日本的阳光号等等,甚至连太空实验室(Skylab)都拍了15000多张太阳的照片。

注:NASA的太阳观测卫星SOHO的网站,其中有许多太阳照片

事实上,观测太阳是有必要的。因为观察太阳表面、黑子与日珥的任务是预测太阳风暴的重要程序。太阳风暴会干扰通讯与电子仪器,影响信息流通与交通,特别是民航航线、卫星与太空飞行任务等受到的影响最大。目前NASA与各国的天文台、气象局都会在需要时对一些单位如民航单位、太空单位甚至电信单位等太阳风暴警告。而这些警告的主要资料来源就是太阳观测卫星。同样的,太空船舰也需要知道这类信息,而他们的资料来源就是自己观察。

一般要拍摄太阳相片的方法,就是以特殊滤镜挂在望远镜头上拍摄。而光感阵列的电子光学系统则会使用特殊的元件的阵列来拍摄,或者也可以让入射光先透过滤镜。前面曾提到的全频谱同步扫瞄处理流程中就可以同时包含滤镜和特殊光感元件这两种元素。当面对太阳、行星时,入光量检测器会改变线路让入光进入强光对应路径。而背对太阳、行星的目标,就会在明亮背景上留下清楚的影子。

因此背对太阳的方案虽然有其效果,但最多也只能使太空船在这个方向的侦测距离降低一两个百分点而已。不过即使是一个百分点,也总比完全没有好。特别是在双方距离十分遥远,正在进行战略机动的时候,此法还是会有点用处。因此在可能的情况下还是会使用此种战术的。

(2)近距离核爆闪光干扰

因为太阳本身就是一个无与伦比的超级大核弹,因此前述的强光对应机制也可以应用在此种情况下。不过极近距离核爆的辐射线、热能可能会破坏船壳上的某些光接收器(但这不属于干扰而应属于战损)。因此太空船表面会常驻有自动或遥控的机器人修理队,以在需要时即时抽换的方式随时替换修理坏掉的光接收器阵列元件。当然,这些机器人同时也会修补船壳破洞与其它外部受损的系统(如果有的话)。

另外需注意的是,此种干扰方式只在两方交火之后才会发生,或者说属于作战时的附加效果。当两方都处于战前索敌状态,连对方的影子都还没看到时,缺乏射核弹的目标,如此自然是无从对敌加以干扰的。而前述的与星球相对位置的干扰效果则视双方战略位置而定,有可能在交火前就能发挥效用。

(3)释放烟幕干扰

在太空中使用烟幕?这可不是简单的打开瓶盖就好了。首先在超真空的环境中,气体会以极高的速度扩散稀释。其次由于太空船是以极高速度前进,在我们的设定中是秒速一百公里,这一来烟幕需要覆盖的空间就小不下来,连带的量也会十分庞大。

很多SF与FHN(比如钢弹、银英传)里面都有粒子散布的场景,其实其设定里面最大的问题就是粒子密度的问题。比如米诺夫斯基粒子、指向性杰服粒子这些的,到底需要多少才能产生效果?大家不妨计算一下构成粒子烟幕的条件,看看一方公里的空间中需要释放几吨的粒子才能达到需求。若是在一万「公里立方」的「极小规模」战场空间又需要多少吨的粒子。

我们不知各种粒子「战斗浓度散布」的浓度是多少,姑且以地球表面空气密度为基准,标准大气的海平面密度为其质量为每1.225公斤/立方公尺。以这个密度在一立方公里的空间内平均散布粒子,总共需要1,225,000吨重的粒子质量。

银英传里的战舰重量多少?查不到资料。不过钢弹倒是有的。鼎鼎有名的原祖飞马级强袭登陆母舰白色基地,全长250公尺,重量68000吨。换句话说,要在一公里立方的空间中释放米诺夫司基粒子,使其达到一般大气空气的密度,所需的质量相当于18台白色基地。

不要忘记,宇宙战舰会以高速前进,所以在小区域内释放粒子是没有用的。假设有一万艘秒速100km的战舰以100公里间隔构成一个垂直正方形。整个阵型在100秒内将会航行前进10000km扫过的体积为一万公里立方,则要在这个方块以标准空气的密度来填满粒子,不管是烟幕、杰服或是米诺夫斯基粒子都行。总共需要几吨的粒子呢?答案是1.225e16,也就是1.225乘十的十六次方公吨的质量。

我们把标准放宽,把粒子密度降到标准空气的一亿分之一好了。这样可以减去八个零,剩下1.2250亿吨而已。从这个计算,我们可以简单看出在太空中施放烟幕/粒子的可能性非常低。

简单来讲,太空之所以称为「空」,是有他的理由的。

(4)指向光束主动干扰

就是直接用强力光束去干扰敌舰。其性质类似于电波雷达时代使用指向电波实施压制性干扰。此方案的前提条件也是要先侦测到敌人,而且要有足够的目标精确度才行,不然干扰光束无从对准敌舰。故一般只能用在交战时。

一般而言,与其说这是太空战舰主要的作战干扰方式,不如说是也只剩这几个方法而已。此法在执行层面上需注意几个问题:

首先,需要有射控等级甚至以上的精确度。使用雷射主炮对敌人实施干扰,必然是在大于标准的攻击射程的时后。因为如果在射程内,则直接使用主炮打破敌舰就好了,没有必要浪费时间去干扰敌方。反过来想,就是因为敌我距离超出主炮破坏射程无法实施破坏性攻击,所以只能稍微加宽光束试图进行干扰。而虽然光束可以加宽,但距离也变远了,对于精度上的要求将不亚于主炮的射击。一般而言,此种干扰的应该在光束武器破坏距离的两倍之内,大约不会超过10光秒。

其次,每艘船一次只能干扰一艘敌舰。在武器篇曾经提到过,太空中不管敌我舰队,舰与舰之间都会数百上千公里的间隔距离。而战舰等级出力的雷射主炮如果改变焦点把光束放的太宽,则能量密度当然就会降到太过稀薄,无法对敌方产生干扰效果的情况。而雷射光束的能量密度,与光束口径是成平方比的关系。

举个简单的例子,假设某舰雷射主炮实施攻击于一光秒外命中敌舰时,其光束为直径一公尺的正圆形。同样的距离下改变焦点把光束口径增加到一百公尺,则面积将变为原先的一万倍,单位能量投掷密度将会降低到原本的万分之一,若口径增加到一公里,则能量密度更会降低到一百万分之一。显然若光束太宽,能量密度就会低到无足轻重,甚至不能迫使对方的传感器进入强光对应机制。因此只能实施一对一的干扰。

最后,由于双方的军舰传感器都会有强光对应机制,因此这种方法的效果和背对太阳一样,只能降低对方几个百分点的感测距离。又由于非得在近距离使用不可,所以实际上的用处甚至比背对太阳还小,是一个典型的有效果但没用处的例子。

最明显的例子就是,假设敌舰侦测距离是两千光秒,则背对太阳可能让对方侦测距离减少个几十上百光秒,在双方距离遥远时还有点用处。可是当双方距离只有十几光秒即将要交战的时候,再怎么干扰都没什么用处,就算很神奇的能让对方侦测距离少一半好了,可是两千光秒的侦测距离减掉一半也还剩一千光秒,而目前敌我距离却只有十几光秒
 楼主| 发表于 2012-7-16 10:07:32 | 显示全部楼层
(5)以诱饵混淆

这个是比较实际的方法。充气模型做的好的话,会有相当程度的效果。但需要注意不能用单纯的充气模型,要能有相应的放热能力,否则在红外频谱的侦测时就会曝光了。另外,也不能用什么热焰弹,这不要说在未来,就是现在也骗不过新型的焦平面凝视阵列寻标头。至于金属片则是用来干扰雷达的,对于不用雷达的家伙就象是垃圾一样。诱饵一定得做的有模有样才行。

比较大的问题是,当对方以全频谱感测将资料互相比对时,模型就很容易露出马脚。全频谱感测除了使用全频宽带元件之外,也可能是在阵列中整合了分别涵盖各频段的不同元件,在之前的侦测系统构成的描述中有提及。

其实这是个人类常犯的想当然尔的问题。因为在人眼来看,只要形状颜色一样,其它的就分不出来了。不幸的是,机器的眼睛并没人的肉眼那么逊。人类肉眼可见光波段在400~800nm,使用波段在800~1500nm的近红外线以及350nm~100nm紫外线频谱,就可以在一定程度下看出物体的热源与材质特质。换句话说,诱饵除了要有可见光波段的伪装外,还得在针对另外这两个频段区域进行伪装。而最大的问题是,这种伪装方法并不容易。

这是因为在化学里面,有种叫做光谱分析的技术,常被用在天文观测上。此种技术是观测物体发射或反射的光线,其学术名称叫做「发射与吸收谱线」,从差异中检查出其构成元素、温度,有时甚至可以从光谱红移或蓝移规模估计出目标的速度与方向。几十年来人们使用此种技术来分析数千万光年的星系构成的物质,要分析数百上千光秒外的物体构成当然是轻而易举。而发射、吸收谱线是物质的一种物理特性,只根据观察目标的构成元素而定,因此是无法伪装的。

换句话说,诱饵不但形状大小与发热量要与真货相仿,连表面材质也要一样才行。最坏的情况是,你需要为诱饵准备一个外壳。虽然很薄,但材质却要与己方的舰艇相同,这会造成诱饵的制造、携带与布放难度大增。

不过,也不是完全没有机会。有个构想就是在所有船舰表面上一律漆上指定涂料,而诱饵则是用模型气球喷漆。这一来就可以使模型诱饵表面的材质反射率与真货一致化,如此就能有某种程度的鱼目混珠的可能性。

当然,模型诱饵里面热源产生器等辅助装备是必要不可缺少的,而且放热特性、热源分布必须与模拟的真实舰非常类似,否则是马上就会被看穿,不是随便放个怀炉在里面就可的。因此模型诱饵的重量与成本都会达到某个程度,携带数量就会受到很大的限制。

附带一提,环境对于模型的使用也会有很大的影响。比如在内行星区域就必需考虑恒星照射对军舰与模型诱饵的加热程度差异问题。这也会影响模型诱饵的运用。

需注意的是,使用模型诱饵对降低被侦测率没有任何帮助,它只能增加敌人的目标,帮忙分散敌人的炮火而已。所以通常只能用在交战或即将进入交战时。如果在敌人还没出现就放出模型,从整个舰队的角度来看等于热点增加,反而会增加舰队的被侦测机率。

在这里必须提到一件事,地球环境中有所谓的「热辐射匿踪」的考量。因为热辐射也是(或者将是)导致被侦测的重要因素。在大气环境中有所谓的「大气窗口」,也就是某些波长的电波/辐射线可以传播很远的距离,而其它波长的电波辐射则会很容易被吸收,无法传播很远。而匿踪载具应尽量避免在窗口波长释放辐射,可能的话,最好将辐射波长特性改变,使其偏移窗口而能很快被大气吸收,如此方能不虞被远方敌人侦测。

故美国在匿踪飞机上除了设法降低排气温度外,往往也会使用特殊材料或涂料来喷涂热点。此法不会降低热能辐射总量(此值只受温度影响,是理论限制),但有可能改变辐射的波长,使其产生偏离大气窗口的效果。这就是所谓的「抗红外线涂料」的运作原理。不止飞机,目前许多军舰、战甲车都有使用这一类的涂料来提高对抗红外侦测的隐身性。

不幸的是,太空中没有大气,因此也就没有可以吸收特定波长的窗口可言。故太空船抗红外线涂料就算涂得再多也无法降低被侦测率。这也是太空中匿踪困难的另一个重要因素。


最后诱饵除战斗时用以欺敌外,拿来执行战略层级的欺敌作业也是可以的,这是太空环境的特点。整只诱饵舰队只要放出去排好阵型,就会持续惯性前进,这时主力舰队可以转弯走别的路线进袭。这种作业一般应该会在数十至上百光秒外执行,也有可能在数千光秒外实施,以将敌人舰队引诱至错误的方向。

(6)主动热能转向储存系统

这是可行性与效果比较高的匿踪方法。其所依据的理论一样是热力学第二定律。热力学第二定律里除了提到热机外,还有另一种相反过程的装置叫做致冷机(Refrigerators)。其操作程序为外界对它做功,让它能由较低温的热库吸取热量,并将它完全排放到较高温的热库中。与没有100%的热机相同,我们也不可能制造出理想的致冷机,整个过程只是从较低温处吸取热量,并将它完全排放至较高温处而已。致冷机的最简单例子就是电冰箱与冷气。

简而言之,太空船动力系统属于热机的一种,其散出的废热将使其极易遭受侦测。若在太空船上针对某些热点装设致冷机吸取其热能,并将热能储存在船舰内的热库中,则太空船对外散出的热能就会降低,从而降低其被侦测的可能性。例如假设太空船启动致冷机之前,船本身的热平衡使船外壳平均温度达到320k,启动致冷机之后,则有可能将船外壳平均温度降低到300k。此时船体的辐射热将会降低,可降低己舰遭到侦测的可能性。

但此种致冷程序将会造成一个现象,即将外壳热点维持在一个较低水平的同时,舰内热热库所储存的热能(即其温度)将会逐渐提高,当热库温度越高时,致冷效率将会逐渐下降,所需投入的能量将会越来越多。而到一个极限时将会需要关闭致冷机,实施放热作业将热库能量一次放出。此时船舰的平均温度将会在短时间提高很多。

简而言之,这是一个主动的热能转向系统。可以投入能源的代价在一个时间区段内暂时储藏热量以降低船舰的被侦测性,并在时间结束后将热能全部放出。换句话说,这是一个限时的有限程度匿踪系统,效用维持时间视船体与装备的不同,应该在数小时到十数小时左右。

此种匿踪系统的最佳开启时期应该在船舰加速到最高巡航速度并将航向指向预定目标后,关闭主引擎(或使之维持低功率运转)实施惯性飞行一段时间,此时船体热平衡温度将低于加速时期。在这时使用超导电池所储存的能量来驱动致冷机,使船体温度与热讯号进一步降低,在致冷机运转的时间内争取潜进目标与及早发现敌舰的机会。并在双方交火或己方确定被侦测后,才关闭致冷机实施放热作业,并重新启动主引擎。

需注意致冷机的效果有其限制,当热库与冷库温度越高时,效率将会越低。同时也不可能把一艘平均温度在320k(摄氏46.5度)的太空船冷却一两百度到220k,因为有热库相对质量容量限制的缘故。一般对一艘大型军舰而言,至多降低数十度,并维持十个小时左右。

至于温度下降获得的效果,可参考热辐射公式:

Eb=αT^4α=Stefan-Boltzmannconstant

从公式可以看出,同一物体之辐射热能与温度的四次方成正比。假设主动热能转向储存系统将船壳平恒温度降低20度,从320k降至300k,辐射量将降为原先的77.24%。若能降低40度,则辐射量将降为原先的58.6%

从以上的公式亦可看出,起始温度对于效果也有重大的影响。例如若维持同样的降幅,但起始温度从320k提升至420k,则温度降低20度与40度带来的新辐射热量将分别为82.27%与67%,可看出虽然温度降幅相同,但辐射量减少的效果明显降低了。这种情况指出一个重点,即在近日行星附近的日照强烈使船壳温度大增的情况下,主动热能转向储存系统的效能将会受到很大的影响。

而这一类主动热能转向储存系统一般只能装备在具有较多的超导电池与较大热库容量的中大型军舰中。基本上越大型的军舰,除电池与热库容量较高带来的较长热能转向时间外,亦可提升致冷机的效率使船体平衡温度降的更低。基本上这就象是大冰箱通常能够比小冰箱来的冷一样。

需注意的是,是,军舰在降温前的平均温度不会因为大小不同而有太大的差异,因为较大的军舰虽然需要消耗较高的能量,但同时也有较大的质量来平均吸收废热使船壳温度不致大幅提升。简单的例子是甲乙两桶水,甲桶一公升,乙桶十公升,两者质量相差十倍。假设对甲输入热量一千卡,乙桶输入一万卡。虽然输入的能量有十倍差距,经由质量差距加以平均,两桶将同样上升一度。

事实上,如果就能量使用效率来分析,一条十万吨等级军舰平时运转消耗的能量将不会达到一万吨等级军舰的十倍。因为规模的增加不只增加消耗的能量,同时也会使能量利用效率也跟著增加。这是工程学与经济学上的有趣现象。当然这指的是平常航行时,而不是装备特殊武器并予以发射的情况。在平常的情况下,一条大船的温度可能反而会比小船低一点点,差个一度半度左右。

到此我们可以大致描述使用此种主动热能转向储存系统的效果。从对方侦测系统看来,较大的军舰可能是轮廓大而黯淡模糊的光点,较小的军舰则会是较小而较亮较明显的光点。因此而会出现较小的船舰反而比较大的船舰容易被侦测到的奇异状况。

最后,此种主动热能转向储存系统在运转时所能获得的匿踪优势,应该直接正比于其降低的辐射热量。在遭到侦测距离的降低效果视环境而言,大约在10%至40%之间。最后必须再强调一次,由于需要把储存几小时的热量在相对较短的时间内放出,此系统启动超过时间限制后的强制散热作业会反过来把被侦测距离提升数倍之谱。

综合以上的方案,在战斗前的索敌阶段,大约只有(1)(6)两项可以同时实施,并使被侦测距离减少10%至40%之间(但有时间限制),或许亦可以因此而获得一个先开火(使用飞弹)的机会。战斗发生后,则执行(2)(5)两项以欺敌,降低自己被击中的机率。其中(5)具有战略性欺敌的意义,也可能提早使用让舰队获得战术乃至于战略优势。至于(3)(4)则不切实际或是意义不大。

不过客观来看,减掉一二十个百分比,甚至假设能减掉五十个百分比的被侦察距离,并不会因此而获得多少的优势。这是因为初始基数太大的关系。例如十三亿公里,4300光秒的被侦察距离就算减半,也还剩下至少六亿公里/2000光秒,七十天的航行距离。此时固然可以先敌侦测、发射飞弹,但也有可能因此而被发现,因为飞弹发射的加力燃烧阶段将会放出相当大的热讯号。

飞弹上当然不可能装设大规模的冷却系统,但是小规模的或许做的到,如使用瓶装液态氦释放的方式可以提供某种程度的降温冷却效果。当然这也是有其限度的。且携带液态氦会占去一定程度的酬载重量。

最后提一下现代军舰、战机的雷达匿踪效果以做为比较参考。第一代匿踪舰拉法叶的设计使其RCS降为传统军舰的5%左右,最新第二代的Visby则降为0.001%。至于空军方面,新一代战机设计可使RCS降为传统的10%,匿踪强国老美新型机F/A-18E/F降为传统机的%1,最先进匿踪机F-22则降到传统机的0.01%以下。至于红外线匿踪效果就差了许多。
 楼主| 发表于 2012-7-16 10:07:57 | 显示全部楼层
太空军舰设计

由于操作环境与技术环境的不同,在太空中运用的军舰,和过去曾经出现与目前存在的船舰、飞机,或是其它的系统,将会有极为巨大的差异。能在太空操作军舰进行战斗的年代,必然会有相应的技术,从而使其具有不同的面貌。虽然其中会有许多技术是目前难以想象的,但是大多数则可以从目前技术与理论推导出来。总而言之,必须先有一个认知:太空战舰很难以现有的系统去类比。

以下是几个太空舰艇的特性:

一、巨大的体积与长度

首先必须提到,太空军舰有个特性,就是它会非常庞大,远比人类使用过的任何船舰大的多了。造成太空战舰的巨大化的直接原因有三个,首先是太空船舰必须携带大量的燃料。例如使用核融合引擎的太空船必须携带数以千吨计的大量氢与氦三,而这些都是需要巨大储存体积的燃料。其次,和过去海军主力战舰倾向于大型化的理由相同,为了追求更高的防御力与攻击力,太空船也会随之大型化。最后一个原因同时也是必要条件,也就是太空船「能够被作的那么大」。

第一个原因在「太空航行导论」里面便已经可以看出来的了。由于火箭公式的限制,为了达到足够的速度,巨大的燃料携带量无可避免,因此太空船的体积与质量很难缩小。即使是单人乘员的小型突击舰或舰载机,也可能会有上百公尺的长度与数千上万吨的重量。装备大量重型武器与厚重装甲的战舰更可能长达数公里至十数公里,质量可能达到数百上千万吨之谱。

其次,在之前的侦测与通讯篇曾提到,在太空中人造物体极难匿踪,太空战舰必定会在很远的地方就被侦测到,而且必然是直接的光学目视侦测。因为太空中没有地球曲率或地表地形,甚至是云雾之类的东西可以遮蔽,因此敌我双方在很远的距离就可以互相目视。

在这里必须注意一点。所谓的「视距外作战」在太空的环境下基本上是不存在的。在地球上的环境里,对于舰艇而言,40km以外的距离就是视距,因为这个之外的目标由于地平线的遮蔽因此是无法直接目视的。对于高飞的战斗机而言,视距的定义就变的有些模糊,一般是30km以内的距离,这是肉眼的极限。当然藉助于一些适当的仪器,例如F-14的电视影像加强系统、Su-27的前视红外线系统等,可以将这个距离略微延伸。例如F-14依靠其电视影像系统,可以辨识大约60~70km以外轰炸机等级的大型目标。而美国目前正在发展,由747改造的大型雷射飞弹拦截机ABL-1,更将有400km的直接攻击距离,其使用雷射雷达与光学望远镜,可以轻易侦测数百至上千公里的目标并且以电子光学仪器加以目视,再时用雷射炮实施攻击。

在侦察篇曾提到,太空中,船舰目标侦测的主要手段便是各类电子光学系统,再加上强力望远镜的支持,将可以轻易看到数百上千光秒外的目标。虽然这里的「视距」不是只靠肉眼就能达到的,但结果是一样的:太空船能够看的距离远比能够打的距离远的多。甚至常常会在看到目标后,还得飞行一两周的时间才进入双方的主炮交火距离内。这也就是说,伏击战在太空中几乎是不可能发生的,双方只有硬碰硬的对决。事实上,这相当类似大洋上的水面舰队高速海战的情况。而在这种情况下,拥有射程越长的武器,能够先射击的一方会越占优势,因此主炮会越来越长,这也自然导致船舰越来越大了。要以过去经验来类比的话,也只有20世纪初期的战斗舰发展的情况可以比拟。

若从武器系统构成的观点来看,目前的火药炮是所谓的瞬间高加速型投掷系统,以火药一瞬间然烧产生的膨胀气体推力推动炮弹。此类系统中单纯加长炮管并不会增加炮弹的速度与威力(以质量弹论),必须增加推进火药量,增加膛压的方式以提升炮弹的炮口初速,这使除增加炮管长度外还得增加管壁厚度,造成火炮质量会随炮口速度的增加而指数上升。因此火药炮能提供的速度有其极限,同时火药炮武器也有其大小限制。

但是粒子炮或是磁道炮这些系统却没有这个问题,他们均属持续等加速型的系统,在炮弹通过炮管时持续提供一个固定加速度,没有膛压的问题。在粒子炮/磁道炮等系统里,同样可以在不变动炮管强度的前提下,以增加电流通量的方式提升投射炮弹的加速度。而在这种情况下,会因为管壁之间的斥力加强,产生类似于火炮的「膛压」问题,这时必须加强其结构强度来以防炮管破裂,此时也会增加系统的重量。然而这种提升电流通量来增加炮弹加速度的方式是非必须的,完全可以用增加炮管长度来取代,因为这类系统乃是基于安培右手定则的一个稳定加速系统,在电磁投射系统中,炮口初速和炮管长度直接成正比。炮管越长则加速时间越长,炮击威力、射程等也就越大,并且在此时系统总重与炮管长度也仅成正比增加,因此可以用很简单的结构来达到较高的炮口初速。而这一点是火药炮所办不到的。

在这种情况下,若想让粒子达到接近光速的速度,除了要有足够大的出力外,炮管也要有一定的长度才行。基于前述原因,在增加出力与增加炮管长度这两个变量调整里面,后者的技术层级远低于前者,较容易达到,成本也较低。现今的许多高能物理实验室里面的粒子加速器就是很好的证据,例如以首次制造出反氢闻名的欧洲粒子物理实验室(CERN),其所拥有的最大粒子加速器便长达二十七公里之谱(环形)。而这么大的武器,当然也只有大的船才装的下。

最后,使太空船舰加大的一个最重要的因素,则是太空船「能够」被建造到那么大。这是由于受到(或者说不受)建造与运用环境的影响。

首先,在地球或是其它星球上,由于有重力存在,因此各种载具有其大小上的极限。大型人造物体必须特别加强抵抗重力的结构与材质,并在支撑结构上投入额外的成本,而这种成本一般会随大小的立方比增长。此乃因体积为边长的力方之故。越大(特别是越高)的人造物,其底层受力就越大,支撑结构质量与空间所占的比例也就越高。因此人工建造物若作的太大,则若非载具的组成结构无法承受本身重量而自己压垮自己,否则就是出现超级昂贵的成本与价格效用比极端低落的情况。

其次,空中飞行的飞机所消耗的大部分能量是用来对抗重力使自己浮在空中,因此有严格的重量限制。这个原因使得飞机的重量远远低于水面舰船(体积就不一定了)。可是太空中没有重力,不需要耗能漂浮,这方面和地球上的水面舰是一样的。

此外,水面舰船的总体密度必须小于一,否则就无法浮在水上。然而太空军舰不可能「沈没」,顶多只会「爆散」,故此没有比重上限,在同重量的条件体型会比水面军舰紧致,而在同体积的条件下重量将远比水面舰艇高的多。

简单来讲,所有的原因都环绕在一个关键要素上:「重力」。就是因为太空中没有重力,所以才会有这种惊人的体型发展的环境。因此太空船在建造时,几乎不会有大小的上限,体积可以非常大。极端的来说,要做成星球等级的大小也并非不可能。例如星际大战里的死星就是典型的行星规模军舰/战斗站。当然,越大的船也就需要消耗越多的燃料。若燃料没有在船只放大时成比例增加,则结果就是速度与机动力的降低,变成只适合执行浮游炮台任务的战斗基地而非舰队作战任务的战舰了。

但是以上的情况同时也意味著一件事,专为太空环境建造的船舰将不可能直接降落在星球表面。星球联系船、强袭登陆舰之类需考虑重返大气与降落等问题的船只必须以不同的概念专门设计来适应重返大气与星球降落的问题。但这些船只也仅能适用于特定用途,战力将远比不上专为太空环境设计的军舰,故而亦将不会投入一般的太空舰队作战中。

二、长筒型的基本构型与细长的外观

在武器篇里曾提到,太空战舰的主炮将以粒子炮为主,炮管会集中在舰首。考量粒子炮长度(可能达舰身总长的90%以上,甚至有可能达100%),整艘船理所当然就会成为长型的结构。此外在太空航行导论里面也曾经提到,太空船引擎的配置必需对称于质心前进轴,否则会引起偏转运动。而这将会使船身在横截面呈圆形。结合以上两点,我们可以得知,太空船基本上将呈现长筒型的构型。

当然,太空船不一定是单纯的长筒构型,也有可能是几个同心长筒套叠而成的复杂长筒型,例如以内圈较长的炮管加上外圈的环型配置引擎(或是反过来,外圈炮管内圈引擎),这时炮管长度即等于船舰总长。唯一可以确定的是,太空船的长度将会远大于其宽度(或者说其直径)。这是由于粒子武器的加速轨远远大于其口径的关系。例如CERN那长27km的粒子加速器里,管道直径(含人员维修用走道)也不过只有数公尺之谱而已。

注:CERN的粒子加速器照片

http://www.esa.int/export/esaED/SEMNXF9YFDD_highschool_1.htmlhttp://www.esa.int/export/esaED/SEMNXF9YFDD_highschool_1.html

[url]http://www.esa.int/export/esaED/SEMNXF9YFDD_highschool_1.html
[url]http://www.esa.int/export/esaED/SEMNXF9YFDD_highschool_1.html

太空军舰设计成长筒型的另一个原因在于,尽量减小前进方向的横截面积将可以大幅减低自己遭命中的机率,同时如果要在前方装设装甲的话,减少装设装甲面积也等于减少重量,或是在装甲重量不变的情况下增加装甲的厚度。事实上,近代主力战车的设计就有这种用意在内-低矮的车身与较低的正面宽度(这同时也有利于铁路运输),并尽量增加正面装甲厚度。

在以上的考量下,太空船将会有巨大的长宽比。例如一艘长两千公尺的战舰,直径可能仅有数十至上百公尺,从侧面看将会极为细长。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表